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51.2  Yes.  Not all colors in the palette need to be used (see note on p. 428)
51.4  Let G be a graph with n vertices that is not complete.  (want to prove that 
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Since G is not complete, there must be a pair of vertices, say x and y, that are not connected.  Then there are at least two vertices, so n must be greater than or equal to 2.  Since x and y are not connected, 
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, so we can assign x and y the same color, say blue.  If we assign all other vertices different colors, none of which are blue, then we will have used n-2+1 = n-1 colors, so 
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51.5  Let G be a graph with n vertices.  (want to prove that 
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; recall that omega is the clique number)  Suppose (for S.O.C.) that 
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Let S be a clique of G that has size 
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.  Since we have only 
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colors to assign to the 
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 vertices of S, at least one pair of vertices in S will have the same color (by P.H.P.).  This is a contradiction, since any pair of vertices in a clique is adjacent and should be assigned a different color.
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51.8  To show that 
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, we can provide a 4-coloring of G that is proper.  For example, 1R, 2B, 3W, 4R, 5G, 6W.  To show that 
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, suppose (for S.O.C.) that we need only 3 colors.  Without loss of generality, say 1R.  Then since both 5 & 6 are adjacent to 1 and to each other, they each need new and different colors, say 5G and 6B.  Since 7 is adjacent to both 5G and 6B, it needs to be red, 7R.  We have vertices 2, 3, and 4 to color, and since 2 can’t be red, we have two options:
Option 1:  2 is blue.  Since 4 is adjacent to 2B and 7R, 4 must be green, 4G.  Finally, since 3 is adjacent to both 2B and 4G, it must be red, 3R.  However, since 3 is also adjacent to 1R, this is a contradiction.

Options 2:  2 is green.  The argument is just like case 1…and we get a contradiction.

Hence, 
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Since we have shown that 
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, we can conclude that 
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51.9  Let G be a graph with exactly one cycle.  (want to prove that 
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Since G has only one cycle, if we remove one vertex, say x, from the cycle, then G-x is acyclic.  If G-x is connected, then it is a tree.  So G-x can be colored with only 2 colors.  Give x a different color and we have a 3-coloring of G that is proper.  Hence, 
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.  If G-x is not connected, then it consists of several trees (each tree being a component of G-x).  Color each tree independently using two colors.  Give x a different color and we have a 3-coloring of G that is proper.
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