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 is undefined since there are some elements of B that are not in A.

25.3  Let A,B be sets.  Prove A=B iff idA=idB
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Let A,B be sets such that A=B.  (WTS: idA=idB)
To show that two functions f and g are the same, we need to show that their domains are the same and that for every x in the domain, f(x)=g(x).

By definition, the domain of idA is set A, while the domain of idB is set B.  Since A=B, the domains are the same.

Let a be an arbitrary elt. of set A.  idA(a)=a by definition.  Since A=B, a is also an elt. of set B, so idB(a)=a.

Hence, idA=idB.
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Let A, B be sets such that idA=idB.  By definition, for two functions to be equal, they must have the same domain, so A=B.

25.7  Let A, B be sets and f, g functions f:A->B and g:B->A, such that 
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.  The domain for g is defined to be set B.  Since f:A->B , the image of f must be a subset of set B.  Since 
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must have the same image, so the image of f must be the entire set B.  Hence, the domain of 
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To show that for every x in set B, 
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To show that f is invertible, we must show that 
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 is a function (all relations are “invertible” by interchanging the elts of the ordered pairs; for a function to be invertible, its inverse must be a function also).  Suppose (for the SOC) that 
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.  But then these ordered pairs belong to g and the ordered pairs (x,b) and (y,b) belong to f.  Then 
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, that means that x=y.  This results in a contradiction, so 
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must be a function.  (Note: this proof could have been written as a direct proof also)
25.8  
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25.9  a.  Let 
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Since f is 1-1, 
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Since g is 1-1, 
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b.  Let 
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c.  a+b->c

25.11  No to both a and b.  A is not a finite set (see 23.12).

25.12  a.  Was proven to be true in 25.9

b.  false.  Let A={1,2,3}



Let f={(1,2),(2,1),(3,3)}  Then f-1={(2,1),(1,2),(3,3)}



Let g=((1,3),(2,2),(3,1)}  Then g-1={(3,1),(2,2),(1,3)}
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But 
[image: image67.wmf])}

1

,

3

(

),

3

,

2

(

),

2

,

1

{(

1

1

=

-

-

f

g

o

  So 
[image: image68.wmf]1

1

1

)

(

-

-

-

¹

f

g

f

g

o

o



c.  True.  Prove: 
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Let f:A->A and g:A->A be bijections.


According to the result of 25.7, if we can show that:



(1) 
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To show that (1) is true, we want to show that the functions on both sides have the same 



domain and that for every x in A, each function maps x to the same value.



The domain of idA is A by definition.   The domain of the composite function 




[image: image73.wmf])

(

)

(

1

1

-

-

g

f

f

g

o

o

o

is the same as the domain of 
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, which is the right-most function.  Since


g is a bijection from A to A, the domain of 
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is A also.  So the two functions have the same domain.



To show that they both map the elt. x in set A to the same value:



IdA(x)=x by definition.



Since g is a bijection from A to A, there is a unique elt. in set A, say y, such that g(y)=x.  Then 


g-1(x)=y.  Since f is a bijection from A to A, there is a unique elt. in set A, say z, such that f(z)=y.



Then f-1(y)=z, so  
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So the two functions are equal, 
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The proof of (2) is very similar…
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