14.1  
a.  is an equiv. rel.

b.  is not an equiv. rel.(fails refl., symm, and trans)


c.  is not an equiv. rel. - divides is not symmetric, since 1 divides 2 but 2 does not divide 1.


d.  is not an equiv. rel. – not symmetric since 1 is less than or equal to 2 but 2 is not ltoet 1.


e.  is an equiv. rel.


f.  is not and equiv. rel. since (4,4) is not in R (not reflexive).


g.  Depends on what we mean by “rearranging its letters” – we will assume they mean that STOP 

is also a rearrangement of the letters of the word STOP; then it is reflexive.  Since it is also symm 


and trans, it is an equiv. rel.
14.2   Prove that if x and y are both odd, then 
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Let x and y both be odd.  Then 
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Then 
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 Hence, 2 divides x-y, so 
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A similar argument can be used to show the second part.

14.3  Prove that if a is an integer, then 
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Let a be an integer.  Then 
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so 2 divides 
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14.4  Prove that congruence modulo n is transitive.


Let 
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WTS: 
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Since 
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, n divides x-y, so there is an integer a such that 
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Since 
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, n divides y-z, so there is an integer b such that 
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But then if we define c=a+b, where c is an integer by closure,



[image: image18.wmf]nc

b

a

n

nb

na

z

y

y

x

z

x

=

+

=

+

=

-

+

-

=

-

)

(

)

(

)

(



Hence, n divides x-z, so 
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14.5  
a.  
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b.  
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c.  
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d.  [you] = the set of all people who have the same parents as you.

e.  [you] = the set of all people who have the same birthday as you.


f.  
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14.6  Prove that [1]=[3] for the equiv. rel. that is congruence mod 2.

Proposition 14.12 says that 
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Since 
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 (because 3-1=2 is div by 2) and 
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So by prop. 14.12, 
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14.7  To prove that 
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we want to show that each set is a subset of the other.


Let R be an equiv. rel. on a set A.


Let 
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 (WTS: that x is in A)


Then, for at least one a in A, 
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In the other direction, let 
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Since R is an equiv. rel., R is reflexive, so xRx, and therefore 
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Hence, 
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14.8  Let R be an equiv. rel. on set A and let a and b be elts. of A.


To prove that 
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Since 
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, by definition, a is in A and aRb.



Since R is an equiv. rel., it is symmetric, so bRa.  Hence, 
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  this direction is identical to the other except we switch the a’s and b’s.

14.10  Let R and S be equiv. rel. on a set A.  To prove an iff statement, we need to go both ways.

Let R=S.  (WTS: the equiv. classes of R are the same as the equiv. classes of S)

Let 
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So 
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  Since R=S, 
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.  Likewise in the other direction, we can show that 
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and hence, 
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, so the equiv. classes of R are the same as the equiv. classes of S.


In the other direction, spse the equiv classes of R are the same as the equiv. classes of S.


(WTS: R=S, by showing that each is a subset of the other)


Let 
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Since R and S have the same equiv. classes, 
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Likewise, we can show that 
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