13.1
a.  reflexive, symmetric, antisymmetric, transitive


b.  irreflexive, antisymmetric

c.  antisymmetric, transitive


d.  symmetric


e.  reflexive, symmetric, transitive

13.2  
a.  
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b.  R is reflexive, since 
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c.  R is not irreflexive since 
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d.  R is symmetric since 
[image: image4.wmf]2

2

£

-

£

-

x

y

that

implies

y

x



e.  R is not antisymmetric since 1R2 and 2R1, but 1 is not equal to 2.


f.  R is not transitive since 1R3 and 3R5 but (1,5) is not in R.
13.3  (see book answer)
13.4  Proof:  Let R and S be relations such that   
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Since we want to show that  
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  we will show that 
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Let  
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Then since 
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  and since 
[image: image10.wmf]1

-

=

S

R

, we know that 
[image: image11.wmf]R

x

y

Î

)

,

(

, so 
[image: image12.wmf]1

)

,

(

-

Î

R

y

x


Hence, 
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Likewise, we can show that 
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13.5  Look at your answers for 13.1…
13.6  Let A,B be subsets of the integers.  ARB iff 
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1.  Reflexive – Yes.  For all subsets A of Z, the cardinality of A is the same as the cardinality of A.


2.  Irreflexive – No.  Every set has the same size as itself.


3.  Symmetric – Yes.  If sets A and B are the same size, then sets B and A are the same size.


4.  Antisymmetric – No.  Let A be the set containing the number 7 and B be the set containing 


the number 8.  Both sets have the same size, but the sets are not equal.


5.  Transitive – Yes.  If sets A and B are the same size and sets B and C are the same size, then 



sets A and C are the same size.

13.7  
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1.  Reflexive – Yes.  Every subset of the integers is a subset of itself.

2.  Irreflexive – No.  Every subset of the integers is a subset of itself.

3.  Symmetric – No.  {1} is a subset of {1,2}, but {1,2} is not a subset of {1}.

4.  Antisymmetric – Yes.  This is how we define equality of sets: if A is a subset of B and B is a 


subset of A, then A=B.

5.  Transitive – Yes.  If A is a subset of B and B is a subset of C, then A is a subset of C.
13.8  Be careful.  Write a formal definition of the relation and make sure that if (a,b) is in the relation, then (b,a) is in the inverse.
13.9  Don’t want to ruin the fun of looking…
13.10  Remember that with an iff statement, we need to go both ways.

Spse R is symmetric (WTS: 
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Hence, 
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In the other direction, spse 
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Let 
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Hence, R is symmetric.
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